TY - JOUR
T1 - Transitional zone prostate cancer
T2 - Performance of texture-based machine learning and image-based deep learning
AU - Lee, Myoung Seok
AU - Kim, Young Jae
AU - Moon, Min Hoan
AU - Kim, Kwang Gi
AU - Park, Jeong Hwan
AU - Sung, Chang Kyu
AU - Jeong, Hyeon
AU - Son, Hwancheol
N1 - Publisher Copyright:
© 2023 the Author(s). Published by Wolters Kluwer Health, Inc.
PY - 2023/9/29
Y1 - 2023/9/29
N2 - This study is aimed to explore the performance of texture-based machine learning and image-based deep-learning for enhancing detection of Transitional-zone prostate cancer (TZPCa) in the background of benign prostatic hyperplasia (BPH), using a one-to-one correlation between prostatectomy-based pathologically proven lesion and MRI. Seventy patients confirmed as TZPCa and twenty-nine patients confirmed as BPH without TZPCa by radical prostatectomy. For texture analysis, a radiologist drew the region of interest (ROI) for the pathologically correlated TZPCa and the surrounding BPH on T2WI. Significant features were selected using Least Absolute Shrinkage and Selection Operator (LASSO), trained by 3 types of machine learning algorithms (logistic regression [LR], support vector machine [SVM], and random forest [RF]) and validated by the leave-one-out method. For image-based machine learning, both TZPCa and BPH without TZPCa images were trained using convolutional neural network (CNN) and underwent 10-fold cross validation. Sensitivity, specificity, positive and negative predictive values were presented for each method. The diagnostic performances presented and compared using an ROC curve and AUC value. All the 3 Texture-based machine learning algorithms showed similar AUC (0.854-0.861)among them with generally high specificity (0.710-0.775). The Image-based deep learning showed high sensitivity (0.946) with good AUC (0.802) and moderate specificity (0.643). Texture -based machine learning can be expected to serve as a support tool for diagnosis of human-suspected TZ lesions with high AUC values. Image-based deep learning could serve as a screening tool for detecting suspicious TZ lesions in the context of clinically suspected TZPCa, on the basis of the high sensitivity.
AB - This study is aimed to explore the performance of texture-based machine learning and image-based deep-learning for enhancing detection of Transitional-zone prostate cancer (TZPCa) in the background of benign prostatic hyperplasia (BPH), using a one-to-one correlation between prostatectomy-based pathologically proven lesion and MRI. Seventy patients confirmed as TZPCa and twenty-nine patients confirmed as BPH without TZPCa by radical prostatectomy. For texture analysis, a radiologist drew the region of interest (ROI) for the pathologically correlated TZPCa and the surrounding BPH on T2WI. Significant features were selected using Least Absolute Shrinkage and Selection Operator (LASSO), trained by 3 types of machine learning algorithms (logistic regression [LR], support vector machine [SVM], and random forest [RF]) and validated by the leave-one-out method. For image-based machine learning, both TZPCa and BPH without TZPCa images were trained using convolutional neural network (CNN) and underwent 10-fold cross validation. Sensitivity, specificity, positive and negative predictive values were presented for each method. The diagnostic performances presented and compared using an ROC curve and AUC value. All the 3 Texture-based machine learning algorithms showed similar AUC (0.854-0.861)among them with generally high specificity (0.710-0.775). The Image-based deep learning showed high sensitivity (0.946) with good AUC (0.802) and moderate specificity (0.643). Texture -based machine learning can be expected to serve as a support tool for diagnosis of human-suspected TZ lesions with high AUC values. Image-based deep learning could serve as a screening tool for detecting suspicious TZ lesions in the context of clinically suspected TZPCa, on the basis of the high sensitivity.
KW - artificial intelligence
KW - diagnostic performance
KW - texture analysis
KW - transitional zone prostate cancer
UR - http://www.scopus.com/inward/record.url?scp=85173562227&partnerID=8YFLogxK
U2 - 10.1097/MD.0000000000035039
DO - 10.1097/MD.0000000000035039
M3 - Article
C2 - 37773806
AN - SCOPUS:85173562227
SN - 0025-7974
VL - 102
SP - E35039
JO - Medicine (United States)
JF - Medicine (United States)
IS - 39
ER -