Spatially Aware Transformer Networks for Contextual Prediction of Diabetic Nephropathy Progression from Whole Slide Images

Benjamin Shickel, Nicholas Lucarelli, Adish Rao, Donghwan Yun, Kyung Chul Moon, Seung Seok Han, Pinaki Sarder

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Scopus citations

Abstract

Diabetic nephropathy (DN) in the context of type 2 diabetes is the leading cause of end-stage renal disease (ESRD) in the United States. DN is graded based on glomerular morphology and has a spatially heterogeneous presentation in kidney biopsies that complicates pathologists' predictions of disease progression. Artificial intelligence and deep learning methods for pathology have shown promise for quantitative pathological evaluation and clinical trajectory estimation; but, they often fail to capture large-scale spatial anatomy and relationships found in whole slide images (WSIs). In this study, we present a transformer-based, multi-stage ESRD prediction framework built upon nonlinear dimensionality reduction, relative Euclidean pixel distance embeddings between every pair of observable glomeruli, and a corresponding spatial self-attention mechanism for a robust contextual representation. We developed a deep transformer network for encoding WSI and predicting future ESRD using a dataset of 56 kidney biopsy WSIs from DN patients at Seoul National University Hospital. Using a leave-one-out cross-validation scheme, our modified transformer framework outperformed RNNs, XGBoost, and logistic regression baseline models, and resulted in an area under the receiver operating characteristic curve (AUC) of 0.97 (95% CI: 0.90-1.00) for predicting two-year ESRD, compared with an AUC of 0.86 (95% CI: 0.66-0.99) without our relative distance embedding, and an AUC of 0.76 (95% CI: 0.59-0.92) without a denoising autoencoder module. While the variability and generalizability induced by smaller sample sizes are challenging, our distance-based embedding approach and overfitting mitigation techniques yielded results that suggest opportunities for future spatially aware WSI research using limited pathology datasets.

Original languageEnglish
Title of host publicationMedical Imaging 2023
Subtitle of host publicationDigital and Computational Pathology
EditorsJohn E. Tomaszewski, Aaron D. Ward
PublisherSPIE
ISBN (Electronic)9781510660472
DOIs
StatePublished - 2023
EventMedical Imaging 2023: Digital and Computational Pathology - San Diego, United States
Duration: 19 Feb 202323 Feb 2023

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Volume12471
ISSN (Print)1605-7422

Conference

ConferenceMedical Imaging 2023: Digital and Computational Pathology
Country/TerritoryUnited States
CitySan Diego
Period19/02/2323/02/23

Bibliographical note

Publisher Copyright:
© 2023 SPIE.

Keywords

  • diabetic nephropathy
  • digital pathology
  • end-stage renal disease
  • glomeruli
  • segmentation
  • self-attention
  • transformer

Fingerprint

Dive into the research topics of 'Spatially Aware Transformer Networks for Contextual Prediction of Diabetic Nephropathy Progression from Whole Slide Images'. Together they form a unique fingerprint.

Cite this