Protective effect of heat shock proteins 70.1 and 70.3 on retinal photic injury after systemic hyperthermia.

Jin Hyoung Kim, Jeong Hun Kim, Young Suk Yu, Seon Mi Jeong, Kyu Won Kim

Research output: Contribution to journalArticle

3 Scopus citations

Abstract

PURPOSE: This study aimed to determine the relationship between the heat shock protein 70 from hsps70.1 and 70.3 on retinal photic injury after systemic hyperthermia. METHODS: Eight-week-old female C57BU6 mice were kept at a constant temperature of 41-42 degrees C for 25-30 minutes. After dark-adaptation for 8 hours, intense light of 11000 lux was maintained for 6 hours. Histology and immunohistochemistry for the inducible heat shock protein 70 (hsp70), the constitutive heat shock protein 70 (hsc70), and westem blot analysis, reverse transcriptase-polymerase chain reaction for hsp70.1 and hsp70.3 were performed just before photic injury and after 1, 4, 7, and 14 days. RESULTS: Light-induced retinal degeneration was prevented by thermotolerance. After hyperthermia, hsp70 was densely expressed in the inner segment of the photoreceptor layer on the photic injury. Hsp70 expression increased for 4 days after photic injury and slowly decreased thereafter. mRNA from hsp70.3 was induced earlier than that of hsp70.1. CONCLUSIONS: Retinal photic injury was prevented by hyperthermia-induced hsp70. Hsp70 from hsp70.3 may be a rapid and short-lived responder, and that from hsp70.1 is a slower and more sustained responder. Hsp70 from hsp70.3 may be an initial retinal chaperone while hsp70 from hsp70.1 may be a sustained chaperone.

Original languageEnglish
Pages (from-to)116-121
Number of pages6
JournalKorean journal of ophthalmology : KJO
Volume19
Issue number2
DOIs
StatePublished - Jun 2005

Cite this