Natural Language Processing for Information Extraction of Gastric Diseases and Its Application in Large-Scale Clinical Research

Gyuseon Song, Su Jin Chung, Ji Yeon Seo, Sun Young Yang, Eun Hyo Jin, Goh Eun Chung, Sung Ryul Shim, Soonok Sa, Moongi Simon Hong, Kang Hyun Kim, Eunchan Jang, Chae Won Lee, Jung Ho Bae, Hyun Wook Han

Research output: Contribution to journalArticlepeer-review

Abstract

Background and Aims: The utility of clinical information from esophagogastroduo-denoscopy (EGD) reports has been limited because of its unstructured narrative format. We developed a natural language processing (NLP) pipeline that automatically extracts information about gastric diseases from unstructured EGD reports and demonstrated its applicability in clinical research. Methods: An NLP pipeline was developed using 2000 EGD and associated pathology reports that were retrieved from a single healthcare center. The pipeline extracted clinical information, including the presence, location, and size, for 10 gastric diseases from the EGD reports. It was validated with 1000 EGD reports by evaluating sensitivity, positive predictive value (PPV), accuracy, and F1 score. The pipeline was applied to 248,966 EGD reports from 2010–2019 to identify patient demographics and clinical information for 10 gastric diseases. Results: For gastritis information extraction, we achieved an overall sensitivity, PPV, accuracy, and F1 score of 0.966, 0.972, 0.996, and 0.967, respec-tively. Other gastric diseases, such as ulcers, and neoplastic diseases achieved an overall sensitivity, PPV, accuracy, and F1 score of 0.975, 0.982, 0.999, and 0.978, respectively. The study of EGD data of over 10 years revealed the demographics of patients with gastric diseases by sex and age. In addition, the study identified the extent and locations of gastritis and other gastric diseases, respectively. Conclusions: We demonstrated the feasibility of the NLP pipeline providing an automated extraction of gastric disease information from EGD reports. Incorporating the pipeline can facilitate large-scale clinical research to better understand gastric diseases.

Original languageEnglish
Article number2967
JournalJournal of Clinical Medicine
Volume11
Issue number11
DOIs
StatePublished - 1 Jun 2022

Keywords

  • digestive system
  • endoscopy
  • gastritis
  • information extraction
  • natural language processing

Fingerprint

Dive into the research topics of 'Natural Language Processing for Information Extraction of Gastric Diseases and Its Application in Large-Scale Clinical Research'. Together they form a unique fingerprint.

Cite this