Multidimensional Early Prediction Score for Drug-Resistant Epilepsy

Kyung Wook Kang, Yong Won Cho, Sang Kun Lee, Ki Young Jung, Ji Hyun Kim, Dong Wook Kim, Sang Ahm Lee, Seung Bong Hong, In Seop Na, So Hyun Lee, Won Ki Baek, Seok Yong Choi, Myeong Kyu Kim

Research output: Contribution to journalArticlepeer-review

Abstract

Background and Purpose Achieving favorable postoperative outcomes in patients with drug-resistant epilepsy (DRE) requires early referrals for preoperative examinations. The purpose of this study was to investigate the possibility of a user-friendly early DRE prediction model that is easy for nonexperts to utilize. Methods A two-step genotype analysis was performed, by applying 1) whole-exome sequencing (WES) to the initial test set (n=243) and 2) target sequencing to the validation set (n=311). Based on a multicenter case–control study design using the WES data set, 11 genetic and 2 clinical predictors were selected to develop the DRE risk prediction model. The early prediction scores for DRE (EPS-DRE) was calculated for each group of the selected genetic predictors (EPS-DREgen), clinical predictors (EPS-DREcln), and two types of predictor mix (EPS-DREmix) in both the initial test set and the validation set. Results The multidimensional EPS-DREmix of the predictor mix group provided a better match to the outcome data than did the unidimensional EPS-DREgen or EPS-DREcln. Unlike previous studies, the EPS-DREmix model was developed using only 11 genetic and 2 clinical predictors, but it exhibited good discrimination ability in distinguishing DRE from drug-responsive epilepsy. These results were verified using an unrelated validation set. Conclusions Our results suggest that EPS-DREmix has good performance in early DRE prediction and is a user-friendly tool that is easy to apply in real clinical trials, especially by nonexperts who do not have detailed knowledge or equipment for assessing DRE. Further studies are needed to improve the performance of the EPS-DREmix model.

Original languageEnglish
Pages (from-to)553-561
Number of pages9
JournalJournal of Clinical Neurology (Korea)
Volume18
Issue number5
DOIs
StatePublished - Sep 2022
Externally publishedYes

Keywords

  • drug resistant epilepsy
  • genetic predictor
  • genome-wide association study
  • ‌epilepsy

Fingerprint

Dive into the research topics of 'Multidimensional Early Prediction Score for Drug-Resistant Epilepsy'. Together they form a unique fingerprint.

Cite this