Abstract
Hypertension is the leading cause of morbidity and mortality worldwide. Hypertension mostly accompanies no symptoms, and therefore blood pressure (BP) measurement is the only way for early recognition and timely treatment. Methods for BP measurement have a long history of development and improvement. Invasive method via arterial cannulation was first proven possible in the 1800’s. Subsequent scientific progress led to the development of the auscultatory method, also known as Korotkoff’ sound, and the oscillometric method, which enabled clinically available BP measurement. However, hypertension management status is still poor. Globally, less than half of adults are aware of their hypertension diagnosis, and only one-third of them being treated are under control. Novel methods are actively investigated thanks to technological advances such as sensors and machine learning in addition to the clinical needs for easier and more convenient BP measurement. Each method adopts different technologies with its own specific advantages and disadvantages. Promises of novel methods include comprehensive information on out-of-office BP capturing dynamic short-term and long-term fluctuations. However, there are still pitfalls such as the need for regular calibration since most novel methods capture relative BP changes rather than an absolute value. In addition, there is growing concern on their accuracy and precision as conventional validation protocols are inappropriate for cuffless continuous methods. In this article, we provide a comprehensive overview of the past and present of BP measurement methods. Novel and emerging technologies are also introduced with respect to their potential applications and limitations. Graphical Abstract: (Figure presented.)
Original language | English |
---|---|
Article number | 9 |
Journal | Clinical Hypertension |
Volume | 30 |
Issue number | 1 |
DOIs | |
State | Published - Dec 2024 |
Bibliographical note
Publisher Copyright:© The Author(s) 2024.
Keywords
- Auscultatory
- Blood pressure
- Novel technology
- Oscillometry
- Photoplethysmography