Effects of natural progesterone and synthetic progestin on germ layer gene expression in a human embryoid body model

Yoon Young Kim, Hoon Kim, Chang Suk Suh, Hung Ching Liu, Zev Rosenwaks, Seung Yup Ku

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

Natural progesterone and synthetic progestin are widely used for the treatment of threatened abortion or in in vitro fertilization (IVF) cycles. This in vitro study aimed to assess whether the treatment with natural progesterone or synthetic progestin influences the germ layer gene expression on the early human embryonic development using human embryonic stem cells (hESCs)-derived embryoid bodies (hEBs) as a surrogate of early stage human embryonic development. Human EBs derived from hESCs were cultured for nine days, and were treated with natural progesterone (P4) or synthetic progestin, medroxyprogesterone acetate (MPA) at 10–7 M for five days. To reverse the effects of treatment, mifepristone (RU486) as progesterone antagonist was added to the hEBs for four days starting one day after the initiation of treatment. Mouse blastocysts (mBLs) were cultured in vitro for 24 h, and P4 or MPA at 10−7 M was treated for an additional 24 h. The treated embryos were further transferred onto in vitro cultured endometrial cells to evaluate chorionic gonadotropin (CG) expression. To analyze the effects of P4 or MPA, the expression of differentiation genes representing the three germ layers was investigated, GATA-binding factor 4 (GATA4), α-fetoprotein (AFP), hepatocyte nuclear factor (HNF)-3β, hepatocyte nuclear factor (HNF)-4α (endoderm), Brachyury, cardiac actin (cACT) (mesoderm), and Nestin (ectoderm), using quantitative reverse transcription PCR (qRT-PCR) and immunostaining. Significantly lower expressions of HNF-3β, HNF-4α, Brachyury, and Nestin were observed in MPA-treated hEBs (all p < 0.05), which was negated by RU486 treatment. This inhibitory effect of MPA was also observed in mouse embryos. Conclusively, the effects of natural progesterone and synthetic progestin may differ in the germ layer gene expression in the hEB model, which suggests that caution is necessary in the use of progestogen.

Original languageEnglish
Article number769
JournalInternational Journal of Molecular Sciences
Volume21
Issue number3
DOIs
StatePublished - 1 Feb 2020

Bibliographical note

Publisher Copyright:
© 2020 by the authors. Licensee MDPI, Basel, Switzerland.

Keywords

  • Early development
  • Human embryoid body
  • Mouse embryo
  • Progesterone
  • Progestin

Fingerprint

Dive into the research topics of 'Effects of natural progesterone and synthetic progestin on germ layer gene expression in a human embryoid body model'. Together they form a unique fingerprint.

Cite this