Deep learning–based fully automated body composition analysis of thigh CT: comparison with DXA measurement

Hye Jin Yoo, Young Jae Kim, Hyunsook Hong, Sung Hwan Hong, Hee Dong Chae, Ja Young Choi

Research output: Contribution to journalArticlepeer-review

Abstract

Objectives: To compare volumetric CT with DL-based fully automated segmentation and dual-energy X-ray absorptiometry (DXA) in the measurement of thigh tissue composition. Methods: This prospective study was performed from January 2019 to December 2020. The participants underwent DXA to determine the body composition of the whole body and thigh. CT was performed in the thigh region; the images were automatically segmented into three muscle groups and adipose tissue by custom-developed DL-based automated segmentation software. Subsequently, the program reported the tissue composition of the thigh. The correlation and agreement between variables measured by DXA and CT were assessed. Then, CT thigh tissue volume prediction equations based on DXA-derived thigh tissue mass were developed using a general linear model. Results: In total, 100 patients (mean age, 44.9 years; 60 women) were evaluated. There was a strong correlation between the CT and DXA measurements (R = 0.813~0.98, p < 0.001). There was no significant difference in total soft tissue mass between DXA and CT measurement (p = 0.183). However, DXA overestimated thigh lean (muscle) mass and underestimated thigh total fat mass (p < 0.001). The DXA-derived lean mass was an average of 10% higher than the CT-derived lean mass and 47% higher than the CT-derived lean muscle mass. The DXA-derived total fat mass was approximately 20% lower than the CT-derived total fat mass. The predicted CT tissue volume using DXA-derived data was highly correlated with actual CT-measured tissue volume in the validation group (R2 = 0.96~0.97, p < 0.001). Conclusions: Volumetric CT measurements with DL-based fully automated segmentation are a rapid and more accurate method for measuring thigh tissue composition. Key Points: • There was a positive correlation between CT and DXA measurements in both the whole body and thigh. • DXA overestimated thigh lean mass by 10%, lean muscle mass by 47%, but underestimated total fat mass by 20% compared to the CT method. • The equations for predicting CT volume (cm3) were developed using DXA data (g), age, height (cm), and body weight (kg) and good model performance was proven in the validation study.

Original languageEnglish
Pages (from-to)7601-7611
Number of pages11
JournalEuropean Radiology
Volume32
Issue number11
DOIs
StatePublished - Nov 2022

Keywords

  • Absorptiometry, photon
  • Body composition
  • Deep learning
  • Image segmentation
  • Sarcopenia

Fingerprint

Dive into the research topics of 'Deep learning–based fully automated body composition analysis of thigh CT: comparison with DXA measurement'. Together they form a unique fingerprint.

Cite this