Deep learning of ECG waveforms for diagnosis of heart failure with a reduced left ventricular ejection fraction

Jung Min Choi, Sungjae Lee, Mineok Chang, Yeha Lee, Gyu Chul Oh, Hae Young Lee

Research output: Contribution to journalArticlepeer-review

Abstract

The performance and clinical implications of the deep learning aided algorithm using electrocardiogram of heart failure (HF) with reduced ejection fraction (DeepECG-HFrEF) were evaluated in patients with acute HF. The DeepECG-HFrEF algorithm was trained to identify left ventricular systolic dysfunction (LVSD), defined by an ejection fraction (EF) < 40%. Symptomatic HF patients admitted at Seoul National University Hospital between 2011 and 2014 were included. The performance of DeepECG-HFrEF was determined using the area under the receiver operating characteristic curve (AUC) values. The 5-year mortality according to DeepECG-HFrEF results was analyzed using the Kaplan–Meier method. A total of 690 patients contributing 18,449 ECGs were included with final 1291 ECGs eligible for the study (mean age 67.8 ± 14.4 years; men, 56%). HFrEF (+) identified an EF < 40% and HFrEF (−) identified EF ≥ 40%. The AUC value was 0.844 for identifying HFrEF among patients with acute symptomatic HF. Those classified as HFrEF (+) showed lower survival rates than HFrEF (−) (log-rank p < 0.001). The DeepECG-HFrEF algorithm can discriminate HFrEF in a real-world HF cohort with acceptable performance. HFrEF (+) was associated with higher mortality rates. The DeepECG-HFrEF algorithm may help in identification of LVSD and of patients at risk of worse survival in resource-limited settings.

Original languageEnglish
Article number14235
JournalScientific Reports
Volume12
Issue number1
DOIs
StatePublished - Dec 2022

Fingerprint

Dive into the research topics of 'Deep learning of ECG waveforms for diagnosis of heart failure with a reduced left ventricular ejection fraction'. Together they form a unique fingerprint.

Cite this