Classification of cervical neoplasms on colposcopic photography using deep learning

Bum Joo Cho, Youn Jin Choi, Myung Je Lee, Ju Han Kim, Ga Hyun Son, Sung Ho Park, Hong Bae Kim, Yeon Ji Joo, Hye Yon Cho, Min Sun Kyung, Young Han Park, Byung Soo Kang, Soo Young Hur, Sanha Lee, Sung Taek Park

Research output: Contribution to journalArticlepeer-review


Colposcopy is widely used to detect cervical cancers, but experienced physicians who are needed for an accurate diagnosis are lacking in developing countries. Artificial intelligence (AI) has been recently used in computer-aided diagnosis showing remarkable promise. In this study, we developed and validated deep learning models to automatically classify cervical neoplasms on colposcopic photographs. Pre-trained convolutional neural networks were fine-tuned for two grading systems: the cervical intraepithelial neoplasia (CIN) system and the lower anogenital squamous terminology (LAST) system. The multi-class classification accuracies of the networks for the CIN system in the test dataset were 48.6 ± 1.3% by Inception-Resnet-v2 and 51.7 ± 5.2% by Resnet-152. The accuracies for the LAST system were 71.8 ± 1.8% and 74.7 ± 1.8%, respectively. The area under the curve (AUC) for discriminating high-risk lesions from low-risk lesions by Resnet-152 was 0.781 ± 0.020 for the CIN system and 0.708 ± 0.024 for the LAST system. The lesions requiring biopsy were also detected efficiently (AUC, 0.947 ± 0.030 by Resnet-152), and presented meaningfully on attention maps. These results may indicate the potential of the application of AI for automated reading of colposcopic photographs.

Original languageEnglish
Article number13652
JournalScientific Reports
Issue number1
StatePublished - 1 Dec 2020

Fingerprint Dive into the research topics of 'Classification of cervical neoplasms on colposcopic photography using deep learning'. Together they form a unique fingerprint.

Cite this