CAMP signaling inhibits radiation-induced ATM phosphorylation leading to the augmentation of apoptosis in human lung cancer cells

Eun Ah Cho, Eui Jun Kim, Sahng June Kwak, Yong-Sung Juhnn

Research output: Contribution to journalArticleResearchpeer-review

18 Citations (Scopus)

Abstract

Background: The ataxia-telangiectasia mutated (ATM) protein kinase plays a central role in coordinating the cellular response to radiation-induced DNA damage. cAMP signaling regulates various cellular responses including metabolism and gene expression. This study aimed to investigate the mechanism through which cAMP signaling regulates ATM activation and cellular responses to ionizing radiation in lung cancer cells.Methods: Lung cancer cells were transfected with constitutively active stimulatory G protein (GαsQL), and irradiated with γ-rays. The phosphorylation of ATM and protein phosphatase 2A was analyzed by western blotting, and apoptosis was assessed by western blotting, flow cytometry, and TUNNEL staining. The promoter activity of NF-κB was determined by dual luciferase reporter assay. BALB/c mice were treated with forskolin to assess the effect in the lung tissue.Results: Transient expression of GαsQL significantly inhibited radiation-induced ATM phosphorylation in H1299 human lung cancer cells. Treatment with okadaic acid or knock down of PP2A B56δ subunit abolished the inhibitory effect of Gαs on radiation-induced ATM phosphorylation. Expression of GαsQL increased phosphorylation of the B56δ and PP2A activity, and inhibition of PKA blocked Gαs-induced PP2A activation. GαsQL enhanced radiation-induced cleavage of caspase-3 and PARP and increased the number of early apoptotic cells. The radiation-induced apoptosis was increased by inhibition of NF-κB using PDTC or inhibition of ATM using KU55933 or siRNA against ATM. Pretreatment of BALB/c mice with forskolin stimulated phosphorylation of PP2A B56δ, inhibited the activation of ATM and NF-κB, and augmented radiation-induced apoptosis in the lung tissue. GαsQL expression decreased the nuclear levels of the p50 and p65 subunits and NF-κB-dependent activity after γ-ray irradiation in H1299 cells. Pretreatment with prostaglandin E2 or isoproterenol increased B56δ phosphorylation, decreased radiation-induced ATM phosphorylation and increased apoptosis.Conclusions: cAMP signaling inhibits radiation-induced ATM activation by PKA-dependent activation of PP2A, and this signaling mechanism augments radiation-induced apoptosis by reducing ATM-dependent activation of NF-κB in lung cancer cells.

Original languageEnglish
Article number36
JournalMolecular Cancer
Volume13
Issue number1
DOIs
StatePublished - 24 Feb 2014

Fingerprint

Ataxia Telangiectasia
Lung Neoplasms
Phosphorylation
Radiation
Apoptosis
Ataxia Telangiectasia Mutated Proteins
Colforsin
Western Blotting
Protein Phosphatase 2
Okadaic Acid
Lung
Ionizing Radiation
Luciferases
Isoproterenol
GTP-Binding Proteins
Dinoprostone
Caspase 3
Protein Kinases
Small Interfering RNA
DNA Damage

Keywords

  • ATM
  • Apoptosis
  • Lung cancer
  • NF-κB
  • Protein phosphatase 2A
  • cAMP signaling

Cite this

@article{c47f0d2ad87945c7a18d450ed257d26b,
title = "CAMP signaling inhibits radiation-induced ATM phosphorylation leading to the augmentation of apoptosis in human lung cancer cells",
abstract = "Background: The ataxia-telangiectasia mutated (ATM) protein kinase plays a central role in coordinating the cellular response to radiation-induced DNA damage. cAMP signaling regulates various cellular responses including metabolism and gene expression. This study aimed to investigate the mechanism through which cAMP signaling regulates ATM activation and cellular responses to ionizing radiation in lung cancer cells.Methods: Lung cancer cells were transfected with constitutively active stimulatory G protein (GαsQL), and irradiated with γ-rays. The phosphorylation of ATM and protein phosphatase 2A was analyzed by western blotting, and apoptosis was assessed by western blotting, flow cytometry, and TUNNEL staining. The promoter activity of NF-κB was determined by dual luciferase reporter assay. BALB/c mice were treated with forskolin to assess the effect in the lung tissue.Results: Transient expression of GαsQL significantly inhibited radiation-induced ATM phosphorylation in H1299 human lung cancer cells. Treatment with okadaic acid or knock down of PP2A B56δ subunit abolished the inhibitory effect of Gαs on radiation-induced ATM phosphorylation. Expression of GαsQL increased phosphorylation of the B56δ and PP2A activity, and inhibition of PKA blocked Gαs-induced PP2A activation. GαsQL enhanced radiation-induced cleavage of caspase-3 and PARP and increased the number of early apoptotic cells. The radiation-induced apoptosis was increased by inhibition of NF-κB using PDTC or inhibition of ATM using KU55933 or siRNA against ATM. Pretreatment of BALB/c mice with forskolin stimulated phosphorylation of PP2A B56δ, inhibited the activation of ATM and NF-κB, and augmented radiation-induced apoptosis in the lung tissue. GαsQL expression decreased the nuclear levels of the p50 and p65 subunits and NF-κB-dependent activity after γ-ray irradiation in H1299 cells. Pretreatment with prostaglandin E2 or isoproterenol increased B56δ phosphorylation, decreased radiation-induced ATM phosphorylation and increased apoptosis.Conclusions: cAMP signaling inhibits radiation-induced ATM activation by PKA-dependent activation of PP2A, and this signaling mechanism augments radiation-induced apoptosis by reducing ATM-dependent activation of NF-κB in lung cancer cells.",
keywords = "ATM, Apoptosis, Lung cancer, NF-κB, Protein phosphatase 2A, cAMP signaling",
author = "Cho, {Eun Ah} and Kim, {Eui Jun} and Kwak, {Sahng June} and Yong-Sung Juhnn",
year = "2014",
month = "2",
day = "24",
doi = "10.1186/1476-4598-13-36",
language = "English",
volume = "13",
journal = "Molecular Cancer",
issn = "1476-4598",
publisher = "BioMed Central Ltd.",
number = "1",

}

CAMP signaling inhibits radiation-induced ATM phosphorylation leading to the augmentation of apoptosis in human lung cancer cells. / Cho, Eun Ah; Kim, Eui Jun; Kwak, Sahng June; Juhnn, Yong-Sung.

In: Molecular Cancer, Vol. 13, No. 1, 36, 24.02.2014.

Research output: Contribution to journalArticleResearchpeer-review

TY - JOUR

T1 - CAMP signaling inhibits radiation-induced ATM phosphorylation leading to the augmentation of apoptosis in human lung cancer cells

AU - Cho, Eun Ah

AU - Kim, Eui Jun

AU - Kwak, Sahng June

AU - Juhnn, Yong-Sung

PY - 2014/2/24

Y1 - 2014/2/24

N2 - Background: The ataxia-telangiectasia mutated (ATM) protein kinase plays a central role in coordinating the cellular response to radiation-induced DNA damage. cAMP signaling regulates various cellular responses including metabolism and gene expression. This study aimed to investigate the mechanism through which cAMP signaling regulates ATM activation and cellular responses to ionizing radiation in lung cancer cells.Methods: Lung cancer cells were transfected with constitutively active stimulatory G protein (GαsQL), and irradiated with γ-rays. The phosphorylation of ATM and protein phosphatase 2A was analyzed by western blotting, and apoptosis was assessed by western blotting, flow cytometry, and TUNNEL staining. The promoter activity of NF-κB was determined by dual luciferase reporter assay. BALB/c mice were treated with forskolin to assess the effect in the lung tissue.Results: Transient expression of GαsQL significantly inhibited radiation-induced ATM phosphorylation in H1299 human lung cancer cells. Treatment with okadaic acid or knock down of PP2A B56δ subunit abolished the inhibitory effect of Gαs on radiation-induced ATM phosphorylation. Expression of GαsQL increased phosphorylation of the B56δ and PP2A activity, and inhibition of PKA blocked Gαs-induced PP2A activation. GαsQL enhanced radiation-induced cleavage of caspase-3 and PARP and increased the number of early apoptotic cells. The radiation-induced apoptosis was increased by inhibition of NF-κB using PDTC or inhibition of ATM using KU55933 or siRNA against ATM. Pretreatment of BALB/c mice with forskolin stimulated phosphorylation of PP2A B56δ, inhibited the activation of ATM and NF-κB, and augmented radiation-induced apoptosis in the lung tissue. GαsQL expression decreased the nuclear levels of the p50 and p65 subunits and NF-κB-dependent activity after γ-ray irradiation in H1299 cells. Pretreatment with prostaglandin E2 or isoproterenol increased B56δ phosphorylation, decreased radiation-induced ATM phosphorylation and increased apoptosis.Conclusions: cAMP signaling inhibits radiation-induced ATM activation by PKA-dependent activation of PP2A, and this signaling mechanism augments radiation-induced apoptosis by reducing ATM-dependent activation of NF-κB in lung cancer cells.

AB - Background: The ataxia-telangiectasia mutated (ATM) protein kinase plays a central role in coordinating the cellular response to radiation-induced DNA damage. cAMP signaling regulates various cellular responses including metabolism and gene expression. This study aimed to investigate the mechanism through which cAMP signaling regulates ATM activation and cellular responses to ionizing radiation in lung cancer cells.Methods: Lung cancer cells were transfected with constitutively active stimulatory G protein (GαsQL), and irradiated with γ-rays. The phosphorylation of ATM and protein phosphatase 2A was analyzed by western blotting, and apoptosis was assessed by western blotting, flow cytometry, and TUNNEL staining. The promoter activity of NF-κB was determined by dual luciferase reporter assay. BALB/c mice were treated with forskolin to assess the effect in the lung tissue.Results: Transient expression of GαsQL significantly inhibited radiation-induced ATM phosphorylation in H1299 human lung cancer cells. Treatment with okadaic acid or knock down of PP2A B56δ subunit abolished the inhibitory effect of Gαs on radiation-induced ATM phosphorylation. Expression of GαsQL increased phosphorylation of the B56δ and PP2A activity, and inhibition of PKA blocked Gαs-induced PP2A activation. GαsQL enhanced radiation-induced cleavage of caspase-3 and PARP and increased the number of early apoptotic cells. The radiation-induced apoptosis was increased by inhibition of NF-κB using PDTC or inhibition of ATM using KU55933 or siRNA against ATM. Pretreatment of BALB/c mice with forskolin stimulated phosphorylation of PP2A B56δ, inhibited the activation of ATM and NF-κB, and augmented radiation-induced apoptosis in the lung tissue. GαsQL expression decreased the nuclear levels of the p50 and p65 subunits and NF-κB-dependent activity after γ-ray irradiation in H1299 cells. Pretreatment with prostaglandin E2 or isoproterenol increased B56δ phosphorylation, decreased radiation-induced ATM phosphorylation and increased apoptosis.Conclusions: cAMP signaling inhibits radiation-induced ATM activation by PKA-dependent activation of PP2A, and this signaling mechanism augments radiation-induced apoptosis by reducing ATM-dependent activation of NF-κB in lung cancer cells.

KW - ATM

KW - Apoptosis

KW - Lung cancer

KW - NF-κB

KW - Protein phosphatase 2A

KW - cAMP signaling

UR - http://www.scopus.com/inward/record.url?scp=84899493873&partnerID=8YFLogxK

U2 - 10.1186/1476-4598-13-36

DO - 10.1186/1476-4598-13-36

M3 - Article

VL - 13

JO - Molecular Cancer

JF - Molecular Cancer

SN - 1476-4598

IS - 1

M1 - 36

ER -