Automated segmentation of whole-body CT images for body composition analysis in pediatric patients using a deep neural network

Seul Bi Lee, Yeon Jin Cho, Soon Ho Yoon, Yun Young Lee, Soo Hyun Kim, Seunghyun Lee, Young Hun Choi, Jung Eun Cheon

Research output: Contribution to journalArticlepeer-review

1 Scopus citations


Objectives: To develop an automatic segmentation algorithm using a deep neural network with transfer learning applicable to whole-body PET-CT images in children. Methods: For model development, we utilized transfer learning with a pre-trained model based on adult patients. We used CT images of 31 pediatric patients under 19 years of age (mean age, 9.6 years) who underwent PET-CT from institution #1 for transfer learning. Two radiologists manually labeled the skin, bone, muscle, abdominal visceral fat, subcutaneous fat, internal organs, and central nervous system in each CT slice and used these as references. For external validation, we collected 14 pediatric PET/CT scans from institution #2 (mean age, 9.1 years). The Dice similarity coefficients (DSCs), sensitivities, and precision were compared between the algorithms before and after transfer learning. In addition, we evaluated segmentation performance according to sex, age (≤ 8 vs. > 8 years), and body mass index (BMI, ≤ 20 vs. > 20 kg/m2). Results: The algorithm after transfer learning showed better performance than the algorithm before transfer learning for all body compositions (p < 0.001). The average DSC, sensitivity, and precision of each algorithm before and after transfer learning were 98.23% and 99.28%, 98.16% and 99.28%, and 98.29% and 99.28%, respectively. The segmentation performance of the algorithm was generally not affected by age, sex, or BMI, except for precision in the body muscle compartment. Conclusion: The developed model with transfer learning enabled accurate and fully automated segmentation of multiple tissues on whole-body CT scans in children. Key Points: • We utilized transfer learning with a pre-trained segmentation algorithm for adult to develop an algorithm for automated segmentation of pediatric whole-body CT. • This algorithm showed excellent performance and was not affected by sex, age, or body mass index, except for precision in body muscle.

Original languageEnglish
Pages (from-to)8463-8472
Number of pages10
JournalEuropean Radiology
Issue number12
StatePublished - Dec 2022


  • Artificial intelligence
  • Body composition
  • Child
  • Deep learning
  • Tomography


Dive into the research topics of 'Automated segmentation of whole-body CT images for body composition analysis in pediatric patients using a deep neural network'. Together they form a unique fingerprint.

Cite this