TY - JOUR
T1 - Automated Prediction of Proximal Middle Cerebral Artery Occlusions in Noncontrast Brain Computed Tomography
AU - Kim, Pyeong Eun
AU - Yang, Hyojung
AU - Kim, Dongmin
AU - Sunwoo, Leonard
AU - Kim, Chi Kyung
AU - Kim, Beom Joon
AU - Kim, Joon Tae
AU - Ryu, Wi Sun
AU - Kim, Ho Sung
N1 - Publisher Copyright:
© 2024 Wolters Kluwer Health. All rights reserved.
PY - 2024/6/1
Y1 - 2024/6/1
N2 - BACKGROUND: Early identification of large vessel occlusion (LVO) in patients with ischemic stroke is crucial for timely interventions. We propose a machine learning-based algorithm (JLK-CTL) that uses handcrafted features from noncontrast computed tomography to predict LVO. METHODS: We included patients with ischemic stroke who underwent concurrent noncontrast computed tomography and computed tomography angiography in seven hospitals. Patients from 5 of these hospitals, admitted between May 2011 and March 2015, were randomly divided into training and internal validation (9:1 ratio). Those from the remaining 2 hospitals, admitted between March 2021 and September 2021, were designated for external validation. From each noncontrast computed tomography scan, we extracted differences in volume, tissue density, and Hounsfield unit distribution between bihemispheric regions (striatocapsular, insula, M1-M3, and M4-M6, modified from the Alberta Stroke Program Early Computed Tomography Score). A deep learning algorithm was used to incorporate clot signs as an additional feature. Machine learning models, including ExtraTrees, random forest, extreme gradient boosting, support vector machine, and multilayer perceptron, as well as a deep learning model, were trained and evaluated. Additionally, we assessed the models' performance after incorporating the National Institutes of Health Stroke Scale scores as an additional feature. RESULTS: Among 2919 patients, 83 were excluded. Across the training (n=2463), internal validation (n=275), and external validation (n=95) datasets, the mean ages were 68.5±12.4, 67.6±13.8, and 67.9±13.6 years, respectively. The proportions of men were 57%, 53%, and 59%, with LVO prevalences of 17.0%, 16.4%, and 26.3%, respectively. In the external validation, the ExtraTrees model achieved a robust area under the curve of 0.888 (95% CI, 0.850-0.925), with a sensitivity of 80.1% (95% CI, 72.0-88.1) and a specificity of 88.6% (95% CI, 84.7-92.5). Adding the National Institutes of Health Stroke Scale score to the ExtraTrees model increased sensitivity (from 80.1% to 92.1%) while maintaining specificity. CONCLUSIONS: Our algorithm provides reliable predictions of LVO using noncontrast computed tomography. By enabling early LVO identification, our algorithm has the potential to expedite the stroke workflow.
AB - BACKGROUND: Early identification of large vessel occlusion (LVO) in patients with ischemic stroke is crucial for timely interventions. We propose a machine learning-based algorithm (JLK-CTL) that uses handcrafted features from noncontrast computed tomography to predict LVO. METHODS: We included patients with ischemic stroke who underwent concurrent noncontrast computed tomography and computed tomography angiography in seven hospitals. Patients from 5 of these hospitals, admitted between May 2011 and March 2015, were randomly divided into training and internal validation (9:1 ratio). Those from the remaining 2 hospitals, admitted between March 2021 and September 2021, were designated for external validation. From each noncontrast computed tomography scan, we extracted differences in volume, tissue density, and Hounsfield unit distribution between bihemispheric regions (striatocapsular, insula, M1-M3, and M4-M6, modified from the Alberta Stroke Program Early Computed Tomography Score). A deep learning algorithm was used to incorporate clot signs as an additional feature. Machine learning models, including ExtraTrees, random forest, extreme gradient boosting, support vector machine, and multilayer perceptron, as well as a deep learning model, were trained and evaluated. Additionally, we assessed the models' performance after incorporating the National Institutes of Health Stroke Scale scores as an additional feature. RESULTS: Among 2919 patients, 83 were excluded. Across the training (n=2463), internal validation (n=275), and external validation (n=95) datasets, the mean ages were 68.5±12.4, 67.6±13.8, and 67.9±13.6 years, respectively. The proportions of men were 57%, 53%, and 59%, with LVO prevalences of 17.0%, 16.4%, and 26.3%, respectively. In the external validation, the ExtraTrees model achieved a robust area under the curve of 0.888 (95% CI, 0.850-0.925), with a sensitivity of 80.1% (95% CI, 72.0-88.1) and a specificity of 88.6% (95% CI, 84.7-92.5). Adding the National Institutes of Health Stroke Scale score to the ExtraTrees model increased sensitivity (from 80.1% to 92.1%) while maintaining specificity. CONCLUSIONS: Our algorithm provides reliable predictions of LVO using noncontrast computed tomography. By enabling early LVO identification, our algorithm has the potential to expedite the stroke workflow.
KW - artificial intelligence
KW - atrial fibrillation
KW - computed tomography angiography
KW - deep learning
KW - ischemic stroke
KW - predictive value of tests
UR - http://www.scopus.com/inward/record.url?scp=85194218386&partnerID=8YFLogxK
U2 - 10.1161/STROKEAHA.123.045772
DO - 10.1161/STROKEAHA.123.045772
M3 - Article
C2 - 38787932
AN - SCOPUS:85194218386
SN - 0039-2499
VL - 55
SP - 1609
EP - 1618
JO - Stroke
JF - Stroke
IS - 6
ER -