Abstract
Radar is a promising non-contact sensor for overnight polysomnography (PSG), the gold standard for diagnosing obstructive sleep apnea (OSA). This preliminary study aimed to demonstrate the feasibility of the automated detection of apnea-hypopnea events for OSA diagnosis based on 60 GHz frequency-modulated continuous-wave radar using convolutional recurrent neural networks. The dataset comprised 44 participants from an ongoing OSA cohort, recruited from July 2021 to April 2022, who underwent overnight PSG with a radar sensor. All PSG recordings, including sleep and wakefulness, were included in the dataset. Model development and evaluation were based on a five-fold cross-validation. The area under the receiver operating characteristic curve for the classification of 1-min segments ranged from 0.796 to 0.859. Depending on OSA severity, the sensitivities for apnea-hypopnea events were 49.0–67.6%, and the number of false-positive detections per participant was 23.4–52.8. The estimated apnea-hypopnea index showed strong correlations (Pearson correlation coefficient = 0.805–0.949) and good to excellent agreement (intraclass correlation coefficient = 0.776–0.929) with the ground truth. There was substantial agreement between the estimated and ground truth OSA severity (kappa statistics = 0.648–0.736). The results demonstrate the potential of radar as a standalone screening tool for OSA.
Original language | English |
---|---|
Article number | 7177 |
Journal | Sensors |
Volume | 22 |
Issue number | 19 |
DOIs | |
State | Published - Oct 2022 |
Externally published | Yes |
Keywords
- convolutional recurrent neural network
- deep learning
- obstructive sleep apnea
- polysomnography
- radar