Application of emerging patterns for multi-source bio-data classification and analysis

Hye Sung Yoon, Sang Ho Lee, Ju Han Kim

Research output: Contribution to journalConference article

3 Scopus citations

Abstract

Emerging patterns (EP) represent a class of interaction structures and have recently been proposed as a tool for data mining. Especially, EP have been applied to the production of new types of classifiers during classification in data mining. Traditional clustering and pattern mining algorithms are inadequate for handling the analysis of high dimensional gene expression data or the analysis of multi-source data based on the same variables (e.g. genes), and the experimental results are not easy to understand. In this paper, a simple scheme for using EP to improve the performance of classification procedures in multi-source data is proposed. Also, patterns that make multi-source data easy to understand are obtained as experimental results. A new method for producing EP based on observations (e.g. samples in microarray data) in the search of classification patterns and the use of detected patterns for the classification of variables in multi-source data are presented.

Original languageEnglish
Pages (from-to)965-974
Number of pages10
JournalLecture Notes in Computer Science
Volume3610
Issue numberPART I
StatePublished - 24 Oct 2005
EventFirst International Conference on Natural Computation, ICNC 2005 - Changsha, China
Duration: 27 Aug 200529 Aug 2005

Cite this